| | Origin | When Arrived in Great Lakes | How Arrived in Great Lakes | |---|---|--|--| | Alosa pseudoharengus | Atlantic coast | Before 1931 | Canals and the St. Lawrence
River | | Hypophthalmichthys
nobilis and
Hypophthalmichthys
molitrix | Originally from China,
now in Mississippi River | Not yet arrived; currently in upper Illinois River less than 55 miles from Lake Michigan; a permanent electric fish barrier is being constructed to prevent their advance towards Lake Michigan | Escaped into the Mississippi
River from aquaculture
facilities in the early 1990s
when the facilities were
flooded | | Gymnocephalus
cernuus | Northern Europe- Black
and Caspian Seas | 1980s | Arrived in ballast water from a ship | | Myriophyllum spicatum | Europe, Asia and North
Africa | 1940s | Introduced as an aquarium plant | | Hydrilla verticillata | Africa | 1960 | Aquarium trade | | Lythrum salicaria | Northern Europe | Early 1900s | Intentionally imported for its beautiful flowers | | Dreissena bugensis | Eurasia | 1989 | Arrived in ballast water from a ship | | Neogobius
melanostomus | Black Sea | 1986-1988 | Arrived in a ship's ballast
water brought into St. Clair
River or Lake St. Clair | | Orconectes rusticus | Ohio River Basin | 1960s | Used as bait by fishermen and released by science classes who had them as pets | | Petromyzon marinus | Atlantic Ocean, St.
Lawrence and Hudson
Rivers and possibly Lake
Ontario | Arrived in 1830s, established by 1938 | Through the Welland Canal | | Bythotrephes cedarstromi | Northern Europe | Lake Huron 1984, in all Great
Lakes by 1987 | Arrived in ballast water from a ship | | Morone americana | Atlantic coast | 1930s-1950s | Canals | | Dreissena polymorpha | Caspian Sea region of
Poland, Bulgaria and
Russia | About 1985 | Arrived in ballast water from a ship | | | Hypophthalmichthys nobilis and Hypophthalmichthys molitrix Gymnocephalus cernuus Myriophyllum spicatum Hydrilla verticillata Lythrum salicaria Dreissena bugensis Neogobius melanostomus Orconectes rusticus Petromyzon marinus Bythotrephes cedarstromi Morone americana | Hypophthalmichthys nobilis and Hypophthalmichthys molitrix Gymnocephalus cernuus Myriophyllum spicatum Europe, Asia and North Africa Hydrilla verticillata Africa Lythrum salicaria Northern Europe Dreissena bugensis Eurasia Neogobius Eurasia Neogobius Black Sea Orconectes rusticus Ohio River Basin Petromyzon marinus Atlantic Ocean, St. Lawrence and Hudson Rivers and possibly Lake Ontario Bythotrephes cedarstromi Morone americana Atlantic coast Dreissena polymorpha Caspian Sea region of Poland, Bulgaria and | Hypophthalmichthys nobilis and Hypophthalmichthys molitrix Originally from China, now in Mississippi River Not yet arrived; currently in upper Illinois River less than 55 miles from Lake Michigan; a permanent electric fish barrier is being constructed to prevent their advance towards Lake Michigan Gymnocephalus cernuus Northern Europe- Black and Caspian Seas 1980s Myriophyllum spicatum Europe, Asia and North Africa 1940s Hydrilla verticillata Africa 1960 Lythrum salicaria Northern Europe Early 1900s Dreissena bugensis Eurasia 1989 Neogobius melanostomus Black Sea 1986-1988 Orconectes rusticus Ohio River Basin 1960s Petromyzon marinus Atlantic Ocean, St. Lawrence and Hudson Rivers and possibly Lake Ontario Arrived in 1830s, established by 1938 Bythotrephes cedarstromi Northern Europe Lake Huron 1984, in all Great Lakes by 1987 Morone americana Atlantic coast 1930s-1950s Dreissena polymorpha Caspian Sea region of Poland, Bulgaria and About 1985 | ^{* =} not a Creature Card | Habitat | Food Source | Impact on Food Web | Other Impact | Notes | |--|---|---|---|---| | Lakes and oceans | Phytoplankton,
zooplankton, and
small crustaceans | Competes for food | Large numbers die
off, can clog water
intake pipes and
contaminate beaches | Thrived when
sea lamprey ate
the fish that prey
upon it | | Surface layers of open
water | Plankton | Would likely compete for
food with native fish; are
large and consume large
quantities of food | Have the potential
of destroying the \$1
billion commercial
and recreational
fishing industry on
the Great Lakes | Silver carp species
are bothered by
boat motor noises
and leap several
feet out of the
water, injuring
boaters | | Fresh and brackish
waters, usually near
river mouths | Highly variable diet
including mollusks,
insect larvae,
small fish, and
crustaceans | Aggressive competitor for food | Reproduces quickly;
its not eaten because
of spiny fins; has a
variable diet | Tolerates varying water conditions | | Full sunlight; lives in
water to depths of 1-
3m/ 3-9ft | Sunlight | Forms thick mats that choke out native vegetation | Disrupts water recreation | Thrives in warm water and spreads quickly | | Any partially sub-
merged body of water
with a salinity level of
less than 7% | Oxygen and
sunlight | Forms tall and thick stalks
and shade or choke out all
native vegetation | Disrupts water recreation and grows until the surface | Reproduces at an incredibly fast rate | | Moist to wet ground in prairies and streambanks | Sunlight | Destroys habitat for other wetland plants | Its roots choke waterways | | | Freshwater lakes up
to 33m/98ft | Plankton | Competes for food | See "zebra mussel" | Reproduces
quickly; lives at
greater depth than
zebra mussels | | Lake bottom; found
in all Great Lakes and
some nearby lakes | Small fish, zebra
mussels, fish eggs | Compete with native sculpin
for resources; reduces top
predators by consuming
their eggs | | Reproduces
quickly; is more
likely to find prey
than to become
prey | | Lakes, ponds, and
streams in areas
where there is debris
on the bottom | Aquatic plants and insects, fish eggs, small fish | Displaces native crayfish; reduce the number and types of aquatic vegetation in invertebrates. | | | | Freshwater lakes and oceans | Lake trout | Upsets the ecosystem balance by removing top predators | Destroys fish by sucking blood and tissues | Had great impact
on the commercial
fishing industry of
the 1950s | | Throughout Great
Lakes and some
inland lakes | Plankton | Competes with small fish
for food, but its spiny tail
prevents it from being eaten | | | |
Marine; spawn in
coastal streams; now
found in freshwater
lakes | Eggs of walleye and
white bass | Competes with yellow perch
and other fish in shallow
water; consumes eggs of
other fish | Reduced number of
walleye impacted
fishing industry | | | Freshwater; native
to the Caspian and
Black Seas; now in all
Great Lakes and some
inland lakes; depths
of 2-7m/ 6-23 ft | Plankton | Competes for food by filtering large amounts of plankton, which has reduced this population | Accumulates on
objects, such as
boat hulls, and clogs
water pipes | Increases water
clarity through
filter feeding,
which increases
algae growth
and decreases
abundance of
plankton |